The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics.

نویسندگان

  • Nir Sade
  • Arava Shatil-Cohen
  • Ziv Attia
  • Christophe Maurel
  • Yann Boursiac
  • Gilor Kelly
  • David Granot
  • Adi Yaaran
  • Stephen Lerner
  • Menachem Moshelion
چکیده

Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Plasma Membrane Aquaporins in Regulating the Bundle Sheath-Mesophyll Continuum and Leaf Hydraulics1[C][W][OPEN]

Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.); Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National d...

متن کامل

bundle sheath defective2, a Mutation That Disrupts the Coordinated Development of Bundle Sheath and Mesophyll Cells in the Maize Leaf.

Within the maize leaf primordium, coordinated cell division and differentiation patterns result in the development of two morphologically and biochemically distinct photosynthetic cell types, the bundle sheath and the mesophyll. The bundle sheath defective2-mutable1 (bsd2-m1) mutation specifically disrupts C4 differentiation in bundle sheath cells in that the levels of bundle sheath cell-specif...

متن کامل

Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies.

Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques...

متن کامل

Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves.

Bundle sheath cells form a sheath around the entire vascular tissue in Arabidopsis leaves and constitute a distinct leaf cell type, as defined by their elongate morphology, their position adjacent to the vein and by differences in their chloroplast development compared to mesophyll cells. They constitute about 15% of chloroplast-containing cells in the leaf. In order to identify genes which pla...

متن کامل

Regulation of leaf hydraulics: from molecular to whole plant levels

The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 3  شماره 

صفحات  -

تاریخ انتشار 2014